Two-way calculus – teacher notes

Student work

Group A	The curve is 0.000 creasing for $x > 1$	Has a local Minimum with y-coordinate 1	Has a Point of inflexion @ x=0
Has a stationary point at $(1,1)$	$y = x^3 + 3x^2 - 9x + 6$		$y = 3x^4 - 4x^3 + 2$
Passes through (0,1)		$y = 2x^3 + 9x^2 + 1$	$y = 1 - \frac{1}{4}x^4 - x^3$
Has an number of stationary points			$y = x^5 - x^3 + 5$

iroup B	The curve is 0.000 creasing for $x > 1$	Has a local ាំសារmum with y-coordinate 1	Point of inflexion at \$20
Has a stationary point at $(1,1)$	$y = x^3 + 3x^2 - 9x + 6$	$y = \frac{x^3}{3} + \frac{x^2}{2} - 2x$	$y = 3x^4 - 4x^3 + 2$
Stationary points at	$y = \frac{2x^3}{3} + 3x^2 + 4$	$y = 2x^3 + 9x^2 + 1$	$y = 1 - \frac{1}{4}x^4 - x^3$
Has an ီ number of stationary points	y= (20-1) ²	y= x2 +1	$y = x^5 - x^3 + 5$

Copyright © University of Cambridge, all rights reserved. https://undergroundmathematics.org/calculus-meets-functions/two-way-calculus-teacher-notes/

iroup C			
	The curve is .lncreasing for $x > 1$	Has a local \max imum with y -coordinate 1	
Has a stationary point at $(1,1)$	$y = x^3 + 3x^2 - 9x + 6$	$(x+2)(x-1)$ $x^{2}-x+2x-2$ $\frac{dy}{dx} = x^{2}+x-2$ $y = \frac{x^{3}}{3} + \frac{x^{2}}{2} - 2x$	$y = 3x^4 - 4x^3 + 2$
has 1 stehanary pent	$\gamma = \alpha^3 - S\alpha^2 + 6$	$y = 2x^{3} + 9x^{2} + 1$ $\frac{6x^{2}}{6x^{2}} = 6x^{2} + 18x$ $0 + x = -3 x = 0$	$y = 1 - \frac{1}{4}x^4 - x^3$
Has an . number of stationary points		$x = 6 x = 3$ $(x-5)(x-3)$ $x^2 - 3x - 5x + 15$ $\frac{dy}{dx} = x^3 - 9x + 15$ $y = \frac{3x^3}{3} - \frac{8x^3}{3} + 15x$	$y = x^5 - x^3 + 5$

Group D	The curve is ♣a.creasing for	Has a local മ്പ്യിസ്ബ് with	Stationary point of insteadion
	x > 1	y-coordinate 1	
Has a stationary point at $(1,1)$	$y = x^3 + 3x^2 - 9x + 6$	$y = \frac{x^{3} + x^{2} - 2x}{3} - 4x^{2} + 8x$ $y = \frac{x^{3} + x^{2} - 2x}{3} + 8x$ $y = x^{3} + x^{2} - x + 1$	$y = 3x^4 - 4x^3 + 2$
Stationary perints of oc = -3 and oc = 0		$y = 2x^3 + 9x^2 + 1$	$y = 1 - \frac{1}{4}x^4 - x^3$
Has an number of stationary points		$y=x^{2}+1$ $y=x^{3}-4x^{2}+15x$ $y=(x^{6}-1)^{2}$	$y = x^5 - x^3 + 5$

Gr	oup E	The curve is x creasing for $x > 1$	Has a local <i>mu</i> aimum with y-coordinate 1	Has a stationary point at oc = 0 (of inflection)
	Has a stationary point at $(1,1)$	$y = x^3 + 3x^2 - 9x + 6$	$y = x^3 + 9x^2 - 21x + 12$ $y = (x - 1)^d + 1$	$y = 3x^4 - 4x^3 + 2$
	y-intercept of 1		$y = 2x^3 + 9x^2 + 1$	$y = 1 - \frac{1}{4}x^4 - x^3$
	Has an മിർ. number of stationary points	y=(x-1)2	y = >c2 + 1	$y = x^5 - x^3 + 5$