## Dot product



The *dot product* (or *scalar product*) of the two real vectors

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

This is a real number (hence the name 'scalar' product). The definition extends to vectors  $\mathbf{a}$  and  $\mathbf{b}$  with *n* components. (Compare this to the cross product, which outputs a vector and which does not have such a simple generalisation.)

The dot product combines information about the lengths of  ${\bf a}$  and  ${\bf b}$  and the angle between them. Specifically,

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where  $|\mathbf{a}|$  and  $|\mathbf{b}|$  are the lengths (magnitudes) of  $\mathbf{a}$  and  $\mathbf{b}$  and  $\boldsymbol{\theta}$  is the angle between the two vectors. It follows that for non-zero vectors  $\mathbf{a}$  and  $\mathbf{b}$ , the dot product is zero exactly when  $\mathbf{a}$  and  $\mathbf{b}$  are at right angles to one another.

For every choice of  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$  and every scalar  $\lambda$ , we have

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$  $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$  $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b}).$ 

(commutativity) (distributivity over addition)