Root mean square

The root mean square is a type of mean.
Given real numbers $a_{1}, a_{2}, \ldots, a_{n}$, the root mean square (often abbreviated to RMS) is obtained by calculating the arithmetic mean of the squares of a_{1}, \ldots, a_{n}, and then taking the square root of this:

$$
\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}
$$

It is useful when trying to measure the average "size" of numbers, where their sign is unimportant, as the squaring makes all of the numbers non-negative.

The most common case of using the root mean square is when calculating the standard deviation of a set of numbers x_{1}, \ldots, x_{n}. The standard deviation is the root mean square of the deviations of these numbers from the mean, that is, the root mean square of ($x_{1}-\bar{x}$), $\ldots,\left(x_{n}-\bar{x}\right)$, where \bar{x} is the mean of x_{1}, \ldots, x_{n}, so

$$
\text { standard deviation }=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}} .
$$

The root mean square can also be used for continuous functions, with integration replacing summation. If the function $f(x)$ is defined for $a \leq x \leq b$, then the root mean square value of $f(x)$ over this interval is

$$
\sqrt{\frac{1}{b-a} \int_{a}^{b}(f(x))^{2} d x}
$$

The root mean square is an example of a power mean.

