This shows that the original
equation is equivalent to
$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0.$$
Since $a \neq 0$, we can divide by a to
get
 $x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$ We complete the square.We can rewrite the right-hand side
by putting it over a common
denominator:
 $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}.$ Consider $ax^2 + bx + c = 0$, where
 $a \neq 0.$ Get the squared term on one side of
the equation:
 $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}.$ Subtracting $\frac{b}{2a}$ from both sides and
putting the right-hand side over a
common denominator gives
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$ We can take the square root of both
sides.Since x appears only once in the
equation, we can rearrange this to
solve for x .Taking account of the possibility of
positive and negative square roots,
we see
 $x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}.$