This shows that the original
equation is equivalent to
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Since a # 0, we can divide by a to
get

2+beyoo,
a a

We complete the square.

We can rewrite the right-hand side
by putting it over a common
denominator:

b \? _ b?—4dac
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Consider ax? + bx + ¢ = 0, where
a#0.

Get the squared term on one side of
the equation:
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Subtracting 2—ba from both sides and
putting the right-hand side over a
common denominator gives
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We can take the square root of both
sides.

Since x appears only once in the
equation, we can rearrange this to
solve for x.

Taking account of the possibility of
positive and negative square roots,

we see
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