For a real number \(x\) we denote by \([x]\) the largest integer less than or equal to \(x\).
Let \(n\) be a natural number. The integral \[\int_0^n [2^x]\, dx\] equals
\(\log_2 ((2^n-1)!)\);
\(n2^n-\log_2 ((2^n)!)\);
\(n2^n\);
\(\log_2 ((2^n)!)\),
where \(k! = 1\times 2 \times 3 \times \cdots \times k\) for a positive integer \(k\).