Solution

  1. Find and simplify the coefficient of \(x^7\) in the binomial expansion of \(\left( x^2 + \dfrac{2}{x} \right)^8\).
The binomial theorem says that, if \(n\) is a positive integer, then \[\begin{equation*} (x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r} \end{equation*}\] where \[\begin{equation*} \binom{n}{r} = \frac{n!}{r!(n-r)!} \end{equation*}\]

So \(\left(x^2+\dfrac{2}{x}\right)^8\) is made up of terms of the form \(\dbinom{8}{r}x^{2r}\left(\dfrac{2}{x}\right)^{8-r}\).

To find the value of \(r\) that gives the term in \(x^7\), we require \(2r-(8-r)=7\), which gives \(r = 5\).

So the coefficient of \(x^7\) is \(\dbinom{8}{5}2^3\), or \(448\).

  1. Calculate the minimum value of \(x^2 + \dfrac{2}{x}\) for positive values of \(x\).
If we let \[\begin{equation*} y = x^2 + \frac{2}{x} = x^2 + 2x^{-1} \end{equation*}\] then we have that \[\begin{equation*} \frac{dy}{dx} = 2x - 2x^{-2}. \end{equation*}\] Hence, \[\begin{equation*} \frac{dy}{dx} = 0 \iff x = x^{-2} \iff x^3 = 1 \iff x = 1. \end{equation*}\]

Is this stationary point a minimum? Yes: as \(x \to 0\) or \(x \to \infty\), \(y \to \infty\), so this stationary point has to be a minimum.

The minimum value of the expression is then \(1^2+\dfrac{2}{1} = 3\).

  1. Given that \(y = \left( x^2 + \dfrac{2}{x} \right)^8\), find the value of \(\dfrac{dy}{dx}\) when \(x = -1\).
By the Chain Rule we have that \[\begin{align*} \frac{dy}{dx} &= 8 \left( x^2 + \frac{2}{x} \right)^7 \times \frac{d}{dx} \left( x^2 + \frac{2}{x} \right) \\ &= 8 \left( x^2 + \frac{2}{x} \right)^7 \left( 2x - 2x^{-2} \right). \end{align*}\] So we have \[\begin{align*} \frac{dy}{dx}(-1) &= 8 \left( (-1)^2 + \frac{2}{-1} \right)^7 \left( 2(-1) - 2(-1)^{-2} \right) \\ &= 8 (1-2)^7 (-2-2) \\ &= 8 (-1)^7 (-4) \\ &= 32. \end{align*}\]