Solution

  1. Evaluate \[\begin{equation*} \int_0^{\tfrac{1}{4} \pi} \tan^3 \theta \:d\theta, \end{equation*}\] giving the answer correct to two significant figures.
We can use the identity \(\sec^2 \theta = \tan^2 \theta + 1\) to help us: \[\begin{align*} \int_0^{\tfrac{1}{4} \pi} \tan^3 \theta \:d\theta &= \int_0^{\tfrac{1}{4} \pi} (\tan^2 \theta) \tan \theta \:d\theta\\ &= \int_0^{\tfrac{1}{4} \pi} (\sec^2 \theta-1) \tan \theta \:d\theta\\ &= \int_0^{\tfrac{1}{4} \pi} \sec^2 \theta\tan \theta - \tan \theta \:d\theta\\ \end{align*}\]

So we have two integrals to calculate; the first is

\[\int_0^{\tfrac{1}{4} \pi} \sec^2 \theta\tan \theta \:d\theta\]

We notice that \(\dfrac{d}{d \theta} \tan \theta = \sec^2 \theta\) (this is a standard result). So, letting \(u = \tan \theta\), our integral becomes

\[\int_0^{\tfrac{1}{4} \pi} u \dfrac{du}{d\theta} \:d\theta = \int_0^{\tan \tfrac{\pi}{4}} u \:du = \dfrac{1}{2} \left[\dfrac{u^2}{2}\right]_0^{\tan \tfrac{\pi}{4}} = \dfrac{1}{2} - 0 = \dfrac{1}{2}\]

Our second integral is

\[\int_0^{\tfrac{1}{4} \pi} tan \theta \:d\theta = \int_0^{\tfrac{1}{4} \pi} \dfrac{\sin \theta}{\cos \theta} \:d\theta\]

We can calculate this by writing \(\tan \theta = \dfrac{\sin \theta}{\cos \theta}\), substituting \(v = \cos \theta\), and noticing that \(-\sin \theta \:d\theta = \:dv\), so our integral is in fact

\[\int_0^{\tfrac{1}{4} \pi} \dfrac{-1}{v} \dfrac{\:d v}{\:d \theta} \:d\theta = \int_0^{\cos \tfrac{\pi}{4}} \dfrac{-1}{v} \:dv = - \biggl[ \ln v \biggr]_1^{\cos \tfrac{\pi}{4}} = \biggl[ \ln \dfrac{1}{v} \biggr]_1^{\tfrac{1}{\sqrt 2}} = \ln{\sqrt 2} - \ln 1 = \dfrac{1}{2} \ln 2 \]

So our final value for \(\int_0^{\tfrac{1}{4} \pi} \tan^3 \theta \:d\theta\) is

\[\dfrac{1}{2} - \dfrac{1}{2} \ln 2 = 0.1534...\]

which equals \(0.15\) to two significant figures.
Alternatively, we can use substitution in a different way. Let \(u = \tan \theta\), so that \[\begin{equation*} \frac{du}{d\theta} = \sec^2 \theta = 1 + \tan^2 \theta = 1 + u^2 \end{equation*}\] and hence \[\begin{align*} \int_0^{\tfrac{1}{4} \pi} \tan^3 \theta \:d\theta = \int_0^1 \frac{u^3}{1 + u^2} \:du &= \int_0^1 \frac{u(1 + u^2)}{1 + u^2} - \frac{u}{1 + u^2} \:du \\ &= \left[ \frac{u^2}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \frac{2u}{1 + u^2} \:du \\ &= \frac{1}{2} - \frac{1}{2} \left[ \log(1 + u^2) \right]_0^1 \\ &= \frac{1}{2} - \frac{\log 2}{2} \\ &= 0.1534\!\ldots \end{align*}\]

which equals \(0.15\) to two significant figures.

  1. By using the substitution \(x+1 = u^2\), or otherwise, find \[\begin{equation*} \int \frac{\sqrt{x+1}}{x-3} \:dx. \end{equation*}\]

Take \(x+1 = u^2\), so that \(x = u^2 - 1\), and \(dx = 2u du\).

Hence, \[\begin{align*} \int \frac{\sqrt{x+1}}{x-3} \:dx &= \int \frac{u}{u^2-4} 2u\:du \\ &= \int \frac{2u^2 - 8+8}{u^2 - 4} \:du\\ &= \int 2 + \frac{8}{(u-2)(u+2)} \:du. \end{align*}\] We can use partial fractions, \[\begin{align*} \frac{8}{(u-2)(u+2)} &= \frac{A}{u-2} + \frac{B}{u+2}\\ \implies\quad 8 &= A(u+2) + B(u-2) \end{align*}\] and substituting \(u=\pm 2\) we find \(A=2\) and \(B=-2\). Hence, \[\begin{align*} \int \frac{\sqrt{x+1}}{x-3} \:dx &= 2u + 2 \int \frac{1}{(u-2)} - \frac{1}{(u+2)} \:du \\ &= 2u + 2 \log(u-2) - 2\log(u+2) + c \\ &= 2\sqrt{x+1} + 2\log(\sqrt{x+1} - 2) - 2\log(\sqrt{x+1} + 2) + c. \end{align*}\]