The lines \(l_1\) and \(l_2\) have equations \(\mathbf{r} = \mathbf{a} + s\mathbf{b}\) and \(\mathbf{r} = \mathbf{c} + t\mathbf{d}\), where \(s\) and \(t\) are real numbers and
\[\mathbf{a} = 5\mathbf{i}+ 6\mathbf{j}- \mathbf{k}, \quad\mathbf{b} = \mathbf{i} +\mathbf{j}+ \mathbf{k}, \quad\mathbf{c} = \mathbf{i}+ 13\mathbf{j} +7\mathbf{k}, \quad\mathbf{d} = \mathbf{i} + 6\mathbf{j} + 3\mathbf{k}.\]
Also, the point $P $ on \(l_1\) and the point \(Q\) on \(l_2\) are such that \(PQ\) is perpendicular to both \(l_1\) and \(l_2.\) In any order:
show that \(PQ = \sqrt{38},\)
find the position vectors of \(P\) and \(Q,\)
obtain the Cartesian equation of the plane containing \(l_1\) and \(PQ\).