Solution

The line \(l\) has the equation \[\mathbf{r}= \begin{pmatrix}5\\ 0\\ 5\end{pmatrix}+ \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix}, \hspace{1cm} \lambda \in \mathbb{R}.\]

  1. Show that \(l\) lies in the plane whose equation is \[\mathbf{r}.\begin{pmatrix}-1\\ 2\\ 0\end{pmatrix}=-5.\]

We need to show that every vector \(\mathbf{r}\) that satisfies the line equation also satisfies the plane equation.

Substituting in, we find

\[\left[\begin{pmatrix}5\\ 0\\ 5\end{pmatrix}+ \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix} \right].\begin{pmatrix}-1\\ 2\\ 0\end{pmatrix}=\begin{pmatrix}5+2\lambda\\ \lambda\\ 5\end{pmatrix} .\begin{pmatrix}-1\\ 2\\ 0\end{pmatrix}= -5 -2\lambda+2\lambda=-5.\]

This is true for every \(\lambda\), so we’ve shown that the line does indeed lie in the given plane.

  1. Find the position vector of \(L\), the foot of the perpendicular from the origin \(O\) to \(l\).

Let \(\overrightarrow{OL} = \begin{pmatrix}5\\ 0\\ 5\end{pmatrix}+ \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix}.\) We need

\[\left[\begin{pmatrix}5\\ 0\\ 5\end{pmatrix}+ \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix} \right].\begin{pmatrix}2\\ 1\\ 0\end{pmatrix}=0\]

which is true if and only if \(10+4\lambda+\lambda =0,\) or \(\lambda = -2.\) Thus \(L\) is the point \(\begin{pmatrix}1\\ -2\\ 5\end{pmatrix}\).

  1. Find an equation of the plane containing \(O\) and \(l\).

We know that \(\overrightarrow{OL}\) is in the plane, and putting \(\lambda = 0\), we know also that \(\overrightarrow{OM}\) is in the plane, where \(\overrightarrow{OM}\) = \(\begin{pmatrix}5\\ 0\\ 5\end{pmatrix}\).

Any point in the plane can be expressed as a linear combination of these vectors. So an equation of the plane is \[\mathbf{r} = \alpha \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}+ \beta \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}.\]

Alternatively, we could write the equation as \(\mathbf{r}.\mathbf{n}=0\) where \(\mathbf{n}\) is the normal to the plane. Substituting in the two points \(L\) and \(M\) tells us that \(\mathbf{n}\) is a multiple of \(\begin{pmatrix}1\\ -2\\ -1\end{pmatrix}\), so the plane equation can be written as \[\mathbf{r}.\begin{pmatrix}1\\ -2\\ -1\end{pmatrix}=0.\]

  1. Find the position vector of the point \(P\) where \(l\) meets the plane \(\pi\) whose equation is \[\mathbf{r}.\begin{pmatrix}1\\ 2\\ 2\end{pmatrix} = 11.\]

Let \(\overrightarrow{OP} = \begin{pmatrix}5\\ 0\\ 5\end{pmatrix} + \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix}.\) If \(P\) is on the plane, then \(\overrightarrow{OP}.\begin{pmatrix}1\\ 2\\ 2\end{pmatrix} = 11,\) and so

\[\begin{align*} \left[ \begin{pmatrix}5\\ 0\\ 5\end{pmatrix}+ \lambda \begin{pmatrix}2\\ 1\\ 0\end{pmatrix} \right].\begin{pmatrix}1\\ 2\\ 2\end{pmatrix} = 11. \end{align*}\]

This implies

\[\begin{align*} 15 + 4\lambda = 11, \end{align*}\]

from which we conclude \(\lambda=-1\). Thus \[\overrightarrow{OP}=\begin{pmatrix}5\\ 0\\ 5\end{pmatrix} - \begin{pmatrix}2\\ 1\\ 0\end{pmatrix}=\begin{pmatrix}3\\ -1\\ 5\end{pmatrix}.\]