A sequence of numbers \(H_1\), \(H_2\), \(H_3\), … is defined as follows: \(H_1=1\) and \(H_n=H_{n-1}+6(n-1)\) for \(n \ge 2\).
- Write down the numerical values of \(H_2\), \(H_3\) and \(H_4\).
- Find an expression for \(H_n\) in terms of \(n\).
We begin by working out what \(H_n\) is in terms of the earlier \(H_i\) values, and then use the formula for the sum of the integers from \(1\) to \(n-1\):
\[\begin{align*} H_n&=H_{n-1}+6(n-1)\\ &=H_{n-2}+6(n-2)+6(n-1)\\ &=\cdots\\ &=H_1+6\times1+6\times2+\cdots+6(n-2)+6(n-1)\\ &=H_1+6\sum_{i=1}^{n-1}i\\ &=1+6\times\frac{1}{2}n(n-1)\\ &=3n^2-3n+1. \end{align*}\]- Prove that \[\sum_{i=1}^n H_i=n^3.\]
as required.