Solution

If \(x - \dfrac{1}{x} = u\), express \(x^3 - \dfrac{1}{x^3}\) and \(x^5 - \dfrac{1}{x^5}\) in terms of \(u\).

We can begin by applying the binomial theorem to see that \[\begin{align*} \left( x - \frac{1}{x} \right)^3 &= x^3 - 3x + \frac{3}{x} - \frac{1}{x^3} \\ &= x^3 - \frac{1}{x^3} - 3\left( x - \frac{1}{x} \right) \end{align*}\] which implies that \[\begin{equation*} x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3 \left( x - \frac{1}{x} \right) = u^3 + 3u. \end{equation*}\] We can do a similar thing again: \[\begin{align*} \left( x - \frac{1}{x} \right)^5 &= x^5 - 5x^3 + 10x - \frac{10}{x} + \frac{5}{x^3} - \frac{1}{x^5} \\ &= x^5 - \frac{1}{x^5} - 5\left( x^3 - \frac{1}{x^3} \right) + 10 \left( x - \frac{1}{x} \right) \end{align*}\] This implies that \[\begin{align*} x^5 - \frac{1}{x^5} &= \left( x - \frac{1}{x} \right)^5 + 5 \left( x^3 - \frac{1}{x^3} \right) - 10 \left( x - \frac{1}{x} \right) \\ &= u^5 + 5(u^3 + 3u) - 10u \\ &= u^5 + 5u^3 + 5u. \end{align*}\]

If we extend this idea, we can write \(x^7-\dfrac{1}{x^7}\), \(x^9-\dfrac{1}{x^9}\) and so on as polynomials in \(u\). Are there any patterns that you can find to the polynomials which result?