- Show that \(\dfrac{d}{dx} (\cos x \sin^{n-1}x) = (n-1) \sin^{n-2}x - n \sin^{n}x\).
How can we differentiate a product?
What techniques could we use to remove any occurrence of \(\cos x\) from the resulting expression?
as required.
as required.
- Given that \(I_n = \displaystyle\int_0^{\frac{1}{2}\pi} e^{-x} \sin^n x \, dx\), show that \[I_n = -e^{-\frac{1}{2}\pi} + n \int_0^{\frac{1}{2}\pi} e^{-x} \cos x \sin^{n-1}x \, dx, \quad (n \ge 1).\]
Here we want to integrate by parts (our ‘product rule’ for integration).
The general formula for integration by parts is \[\int_a^b u \frac{dv}{dx} \, dx = \bigl[uv\bigr]_a^b - \int_a^b v\frac{du}{dx} \, dx.\]
- By using the results of (i) and (ii), or otherwise, show that \[(n^2 + 1) I_n = -e^{-\frac{1}{2}\pi} + n(n-1) I_{n-2}, \quad (n \ge 2).\]
(The third line follows by evaluating the limits, which are both zero as long as \(n>1\); we are specifically told \(n\ge2\) here.)
Substituting this into \(\eqref{eq:1}\) now gives \[I_n = -e^{-\frac{1}{2}\pi} + n(n-1) I_{n-2} - n^2 I_n.\]
Rearranging gives \[\begin{equation} (n^2 + 1) I_n = -e^{-\frac{1}{2}\pi} + n(n-1) I_{n-2} \label{eq:2} \end{equation}\]as required.
- Show that \(I_4 = \frac{1}{85} (24 - 41 e^{-\frac{1}{2}\pi})\).
Rearranging \(\eqref{eq:2}\) gives \[I_n = \frac{1}{n^2 + 1} \bigl( -e^{-\frac{1}{2}\pi} + n(n-1) I_{n-2}\bigr).\]
So by setting \(n=4\) we get \[I_4 = \frac{1}{17} \bigl( -e^{-\frac{1}{2}\pi} + 12 I_2\bigr),\] and similarly, setting \(n=2\) gives \[I_2 = \frac{1}{5} \bigl( -e^{-\frac{1}{2}\pi} + 2 I_0\bigr).\]
By substituting the expression for \(I_2\) into that for \(I_4\) we get \[I_4 = \frac{1}{17} \left( -e^{-\frac{1}{2}\pi} + 12 \left(\frac{1}{5} \bigl( -e^{-\frac{1}{2}\pi} + 2 I_0\bigr)\right)\right),\] which rearranges to give \[I_4 = \frac{1}{85} \bigl(24 I_0 - 17e^{-\frac{1}{2}\pi}\bigr).\]
Now, by the definition of \(I_n\), \[\begin{align*} I_0 &{}=\int_0^{\frac{1}{2}\pi} e^{-x} \, dx \\ &{}= \bigl[-e^{-x}\bigr]_0^{\frac{1}{2}\pi} \\ &{}= 1 - e^{-\frac{1}{2}\pi}, \end{align*}\]so the expression for \(I_{4}\) becomes \[I_4 = \frac{1}{85} \bigl(24 - 41 e^{-\frac{1}{2}\pi}\bigr).\]