Solution

The sum of the first \(n\) terms of a series is given by the expression \[\begin{equation*} 6 - \frac{2^{n+1}}{3^{n-1}}. \end{equation*}\]

By finding an expression for the \(n\)th term of the series, or otherwise, show that this is a geometric series, and state the values of the first term and the common ratio.

Let the sequence that we are summing be \((a_n)\) for \(n \ge 1\), so that \[\begin{equation*} a_1 + \dotsb + a_n = 6 - \frac{2^{n+1}}{3^{n-1}} \end{equation*}\] for every \(n \ge 1\). In particular, \[\begin{equation*} a_1 = 6 - \frac{2^2}{3^0} = 6 - 4 = 2, \end{equation*}\] and, for every \(n \ge 2\), \[\begin{align*} a_{n} = \left( a_1 + \dotsb + a_{n} \right) - \left( a_1 + \dotsb + a_{n-1} \right) &= \left( 6 - \frac{2^{n+1}}{3^{n-1}} \right) - \left( 6 - \frac{2^{n}}{3^{n-2}} \right) \\ &= \frac{2^{n}}{3^{n-2}} - \frac{2^{n+1}}{3^{n-1}} \\ &= \frac{2^{n}}{3^{n-2}} \left( 1 - \frac{2}{3} \right) \\ &= \frac{2^{n}}{3^{n-2}} \frac{1}{3} \\ &= \frac{2^{n}}{3^{n-1}} \\ &= 2 \left( \frac{2}{3} \right)^{n-1}. \end{align*}\]

Thus, \((a_n)\) is a geometric progression with first term \(a_1 = 2\) and common ratio \(\dfrac{2}{3}\).