Prove that the sum of the first \(n\) terms of the arithmetical progression \[a+(a+d)+(a+2d)+...,\] is \[\frac{1}{2}n\lbrace{2a+(n-1)d}\rbrace.\]
We need the value of the sum \[S=a+(a+d)+\dotsb+(a+(n-2)d)+(a+(n-1)d).\]
Reversing the order of the terms, we have \[S=(a+(n-1)d)+(a+(n-2)d)+\dotsb+(a+d)+a.\]
We can now add these expressions together, giving
\[2S=[a+(a+(n-1)d)]+[(a+d)+(a+(n-2)d)]+\dotsb+[(a+(n-2)d)+(a+d)],\] which can be rewritten as \[2S=[2a+(n-1)d]+[2a+(n-1)d]+\dotsb+[2a+(n-1)d]+[2a+(n-1)d],\] where the expression \([2a+(n-1)d]\) occurs \(n\) times.
This simplifies to \[2S=n[2a+(n-1)d],\] and on dividing by two, we have \(S=\frac{1}{2}n\lbrace2a+(n-1)d\rbrace\).
Hence, or otherwise, show that \[1^2-2^2+3^2-4^2+\dotsb+ (2n-1)^2-(2n)^2=-n(2n+1).\]
Now \(3+7+11+\dotsb+ (4n-1)\) is an arithmetic series with \(n\) terms and common difference \(4\), so its sum is \(\dfrac{n}{2}(6+(n-1)4)=n(2n+1)\).
Thus (remembering the \(-1\)), we have \[1^2-2^2+3^2-4^2+\dotsb+(2n-1)^2-(2n)^2=-n(2n+1),\] as required.
Deduce the sums of the series
- \(1^2-2^2+3^3-4^2+\dotsb+(2n-1)^2-(2n)^2+(2n+1)^2\),
- \(21^2-22^2+23^2-24^2+\dotsb+39^2-40^2\).
Let \(S_{2n}=1^2-2^2+3^2-4^2+\dotsb+(2n-1)^2-(2n)^2\).
So using our formula from earlier, we need to find \(S_{40}-S_{20} = -20(40+1)-(-10(20+1))= -820+210 = -610\).