The functions \(f\), \(g\) and \(h\) are related by \[f'(x) = g(x+1), \qquad g'(x)=h(x-1).\] It follows that \(f''(2x)\) equals

\(h(2x+1)\);

\(2h'(2x)\);

\(h(2x)\);

\(4h(2x)\).

The functions \(f\), \(g\) and \(h\) are related by \[f'(x) = g(x+1), \qquad g'(x)=h(x-1).\] It follows that \(f''(2x)\) equals

\(h(2x+1)\);

\(2h'(2x)\);

\(h(2x)\);

\(4h(2x)\).