The origin lies within the circle with equation \[x^2+ax+y^2+by=c\] precisely when
\(c > 0\)
\(a^2 + b^2 > c\)
\(a^2 + b^2 < c\)
\(a^2 + b^2 > 4c\)
\(a^2 + b^2 < 4c\).
The origin lies within the circle with equation \[x^2+ax+y^2+by=c\] precisely when
\(c > 0\)
\(a^2 + b^2 > c\)
\(a^2 + b^2 < c\)
\(a^2 + b^2 > 4c\)
\(a^2 + b^2 < 4c\).