Solution

The origin lies within the circle with equation \[x^2+ax+y^2+by=c\] precisely when

  1. \(c > 0\)

  2. \(a^2 + b^2 > c\)

  3. \(a^2 + b^2 < c\)

  4. \(a^2 + b^2 > 4c\)

  5. \(a^2 + b^2 < 4c\).

We can write the equation of the circle as

\[\left(x+\dfrac{a}{2}\right)^2 -\left(\dfrac{a}{2}\right)^2+\left(x+\dfrac{b}{2}\right)^2 -\left(\dfrac{b}{2}\right)^2 = c,\]

or

\[\left(x+\dfrac{a}{2}\right)^2 +\left(x+\dfrac{b}{2}\right)^2 = c + \left(\dfrac{a}{2}\right)^2 +\left(\dfrac{b}{2}\right)^2.\]

Thus the region inside the circle is denoted by

\[\left(x+\dfrac{a}{2}\right)^2 +\left(x+\dfrac{b}{2}\right)^2 < c + \left(\dfrac{a}{2}\right)^2 +\left(\dfrac{b}{2}\right)^2.\]

Does \((0,0)\) satisfy this inequality? If and only if

\[\left(0+\dfrac{a}{2}\right)^2 +\left(0+\dfrac{b}{2}\right)^2 < c + \left(\dfrac{a}{2}\right)^2 +\left(\dfrac{b}{2}\right)^2,\]

which is true if and only if \(0 < c\), and the answer is (a).