The turning point of the parabola \[y=x^2-2ax+1\] is closest to the origin when
\(a=0\),
\(a=\pm1\),
\(a=\pm \frac{1}{\sqrt{2}}\) or \(a=0\),
\(a=\pm \frac{1}{\sqrt{2}}\).
The turning point of the parabola \[y=x^2-2ax+1\] is closest to the origin when
\(a=0\),
\(a=\pm1\),
\(a=\pm \frac{1}{\sqrt{2}}\) or \(a=0\),
\(a=\pm \frac{1}{\sqrt{2}}\).