Let \(n\) be a positive integer. Then \(x^2 +1\) is a factor of
\[(3+x^4)^n-(x^2+3)^n(x^2-1)^n\]
for
all \(n\);
even \(n\);
odd \(n\);
\(n \geq 3\);
no values of \(n\).
Let \(n\) be a positive integer. Then \(x^2 +1\) is a factor of
\[(3+x^4)^n-(x^2+3)^n(x^2-1)^n\]
for
all \(n\);
even \(n\);
odd \(n\);
\(n \geq 3\);
no values of \(n\).