The smallest possible integer \(n\) such that \[1-2+3-4+5-6+\cdots +(-1)^{n+1}n \geq 100\] is
\(99\),
\(101\),
\(199\),
\(300\).
The smallest possible integer \(n\) such that \[1-2+3-4+5-6+\cdots +(-1)^{n+1}n \geq 100\] is
\(99\),
\(101\),
\(199\),
\(300\).