Problem

Match up each function with its domain and range. They form a set of domino cards that can be arranged in a sequence.

To turn the sequence into a closed loop, you will need to complete the cards with missing information. A separate sheet containing just those cards is available here.

graph of x squared plus 1
\(f(x)=x^2+1\)

domain:
\(x\neq-1\)

range:
\(f(x)\neq0\)

graph of mod x
\(f(x)=|x|\)

domain:
\(x\in \mathbb{R}\)

range:
\(f(x)\ge1\)

graph of cube root x
\(f(x)=\sqrt[3]{x}\)

domain:
\(x\in \mathbb{R}\)

range:
\(0\!<\!f(x)\!\le\!1\)

graph of square root x
\(f(x)=\sqrt{x}\)

domain:
\(x\in \mathbb{R}\)

range:
\(f(x)\ge-1\)

graph of 1 over x
\(f(x)=\frac{1}{x}\)

domain:
\(x\neq0\)

range:
\(f(x)\ne-1\)

graph of x plus 1 over x
\(f(x)=x+\frac{1}{x}\)

domain:
\(x\neq-1\), \(x\neq1\)

range:
\(f(x)\le-1\) or \(f(x)>0\)

graph of 1 over x squared
\(f(x)=\frac{1}{x^2}\)

domain:
\(x\in \mathbb{R}\)

range:
\(f(x)\ge0\)

graph of 1 over x squared plus 1
\(f(x)=\frac{1}{x^2+1}\)

domain:
\(x\ge0\)

range:
\(f(x)\ge0\)

graph of 1 over x squared minus 1
\(f(x)=\frac{1}{x^2-1}\)

domain:
\(x>0\)

range:
\(f(x)>0\)

graph of 1 over 1 plus x
\(f(x)=\frac{1}{1+x}\)

domain:
\(x\ge0\)

range:
\(f(x)\le\frac{2}{3}\)

graph of 1 over square root x
\(f(x)=\frac{1}{\sqrt{x}}\)

domain:
\(x\in \mathbb{R}\)

range:
\(f(x)\in \mathbb{R}\)

graph of root 3 x times 1 minus x
\(f(x)=\sqrt{3x}(1-x)\)

domain:
\(x\neq0\)

range:
\(f(x)\neq0\)

blank axes
\(f(x)=\frac{1}{x}-1\)

domain:


range:

blank axes
\(f(x)=\qquad\qquad\)

domain:


range: