Comparing approaches

Approach 1 gave the cartesian equation \[x=a\ln\left(\frac{a+\sqrt{a^2-y^2}}{y}\right)-\sqrt{a^2-y^2}.\]

Approach 2 gave the parametric form \[\left(t-a\tanh\Bigl(\frac{t}{a}\Bigr), a\sech\Bigl(\frac{t}{a}\Bigr)\right).\]

Are these equivalent?

In the parametric form, we have \[(x,y)=\left(t-a\tanh\Bigl(\frac{t}{a}\Bigr), a\sech\Bigl(\frac{t}{a}\Bigr)\right).\]

Therefore \(\sech(t/a)=y/a\), so \(a/y=\cosh(t/a)\) and \(t=a\arcosh(a/y)\).

Using the identity \(1-\tanh^2(t/a)=\sech^2(t/a)\), we also get \[a\tanh\Bigl(\frac{t}{a}\Bigr)= a\sqrt{1-\Bigl(\frac{y}{a}\Bigr)^2}=\sqrt{a^2-y^2}.\]

This is definitely looking hopeful!

We just need to find a way of expressing \(\arcosh u\) in terms of \(u\) (where we’re writing \(u=a/y\) to make things look a little simpler).

If \(\arcosh u=w\), then \(u=\cosh w\), so \[u=\frac{e^w+e^{-w}}{2}.\] Multiplying by \(e^w\) and rearranging gives \[e^{2w}-2ue^w+1=0.\] Since \(u=y/a>0\), we take the root of this quadratic in \(e^w\) which is greater than \(1\), getting \[e^w=\frac{2u+\sqrt{(2u)^2-4}}{2}=u+\sqrt{u^2-1},\] so \[w=\arcosh u=\ln\bigl(u+\sqrt{u^2-1}\bigr).\] Now substituting \(u=a/y\) and taking logarithms gives \[\begin{align*} \arcosh\Bigl(\frac{a}{y}\Bigr) &=\ln\left(\frac{a}{y}+\sqrt{\Bigl(\frac{a}{y}\Bigr)^2-1}\right)\\ &=\ln\left(\frac{a+\sqrt{a^2-y^2}}{y}\right) \end{align*}\] Putting everything together, using \(t=a\arcosh(a/y)\), then gives \[\begin{align*} x&=t-a\tanh\Bigl(\frac{t}{a}\Bigr)\\ &=a\ln\left(\frac{a+\sqrt{a^2-y^2}}{y}\right) - \sqrt{a^2-y^2} \end{align*}\]

as we wanted.